

OCR (A) Chemistry A-level

Topic 5.3.1 - Transition Elements

Topic 5.3.2 - Qualitative Analysis

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Define a transition element

Define a transition element

A d block element that forms at least one stable ion with partially filled d subshell

Where are the transition metals located in the periodic table?

Where are the transition metals located in the periodic table?

In the middle block from Ti to Cu

What are the 2 elements in d block that are not considered as transition metals?

What are the 2 elements in d block that are not considered as transition metals?

Scandium and zinc

Why is scandium and zinc not considered as transition metals?

Why is scandium and zinc not considered as transition metals?

Scandium only forms Sc³⁺, where the d orbitals are empty

Zinc only forms Zn²⁺ where the d orbitals are full

What is the noble gas configuration of chromium?

What is the noble gas configuration of chromium?

[Ar]4s¹3d⁵

What is the noble gas configuration of copper?

What is the noble gas configuration of copper?

 $[Ar]4s^{1}3d^{10}$

Which electrons do transition metals lose first when forming ions?

Which electrons do transition metals lose first when forming ions?

4s

What are some characteristic physical properties of transition metals?

What are some characteristic physical properties of transition metals?

- Metallic
- High density
- High melting and boiling point
- Shiny
- Good conductors of heat and electricity

What are the characteristic chemical properties of transition metals (4)?

What are the characteristic chemical properties of transition metals (4)?

- Variable oxidation states → take part in many redox reactions
- Coloured compounds/ions in solution
- Good catalysts
- Form complex ions

In potassium manganate (VII), what is the oxidation number of Mn?

In potassium manganate (VII), what is the oxidation number of Mn?

$$Mn = +7$$

What are the 2 main ways in which transition metals act as an effective catalyst?

What are the 2 main ways in which transition metals act as an effective catalyst?

- They provide a surface on which reaction can take place
- They change oxidation states to form intermediates required for pathways with lower activation energy

Give some examples of transition metal catalysts and the processes/reactions they catalyse (4)?

Give some examples of transition metal catalysts and the processes/reactions they catalyse (4)?

- Iron Haber process
- Vanadium (V) oxide contact process
- Nickel hydrogenation of alkenes
- Manganese (IV) oxide decomposition of hydrogen peroxide
- Copper sulfate hydrogen production

What is a complex ion?

What is a complex ion?

Transition metal ion bonded to one or more ligands by coordinate bonds

Define a ligand

Define a ligand

Molecule or an ion that can donate a pair of electrons to the metal to form a coordinate bond

What is a coordinate bond?

What is a coordinate bond?

A bond in which one of the atom provides both the electrons required for bonding, also known as dative bonding.

What does the coordination number indicate?

What does the coordination number indicate?

The number of coordinate bonds formed between the metal ion and its ligands

What is a mono/unidentate ligand?

What is a mono/unidentate ligand?

A ligand that forms one co-ordinate bond to the central metal ion (one lone pair to donate)

What is a bidentate ligand?

What is a bidentate ligand?

A ligand that forms two coordinate bonds to the central metal ion (2 lone pairs to donate)

What is a multidentate ligand?

What is a multidentate ligand?

A ligand that forms three or more coordinate bonds to the central metal ion

Give some examples of common monodentate ligands

Give some examples of common monodentate ligands (4).

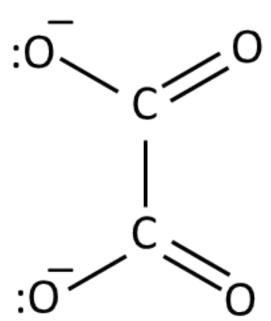
 Cl^{-} , H_2O , NH_3 , CN^{-}

Name the most common bidentate ligand

Name the most common bidentate ligand

ethane-1,2-diamine

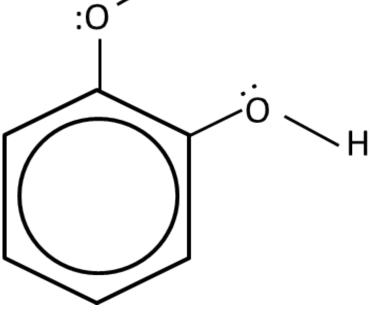
Draw ethanedioate; how many coordinate bonds can it form to a transition metal ion?



Draw ethanedioate; how many coordinate bonds can it form to a transition metal ion?

2 co-ordinate bonds

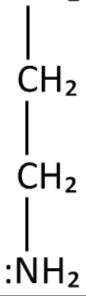
Draw benzene-1,2-diol; how many coordinate bonds can it form to a transition metal ion?



Draw benzene-1,2-diol; how many coordinate bonds can it form to a transition metal ion?

2 coordinate bonds

Draw ethane-1,2-diamine. What is its shortened name? How many coordinate bonds does it form?



Draw ethane-1,2-diamine. What is its shortened name? How many coordinate bonds does it form? :NH₂

2 coordinate bonds, shortened name = en

How many coordinate bonds does EDTA⁴⁻ form?

How many coordinate bonds does EDTA⁴⁻ form?

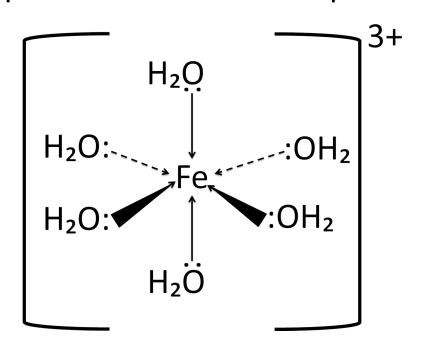
Six

EDTA is a chelating agent, what does that mean?

EDTA is a chelating agent, what does that mean?

EDTA decreases the concentration of metal ions in the solution by binding to them and forming complex ions

What ion is usually formed when a transition metal compound is dissolved in water? What shape is it? Draw an example



What ion is usually formed when a transition metal compound is dissolved in water? What shape is it? Draw an example

Aqua ion, 6 H₂O ligands around the central metal ion. Octahedral complex ion is formed

If a transition metal ion has 2 ligands, what shape is it usually?

If a transition metal ion has 2 ligands, what shape is it usually?

Linear

If a transition metal ion has 4 ligands, what shape is it usually?

If a transition metal ion has 4 ligands, what shape is it usually?

Tetrahedral

Name an exception to the general rule that ions with 4 ligands is generally tetrahedral. What shape is it?

Name an exception to the general rule that ions with 4 ligands is generally tetrahedral. What shape is it?

Platin is square planar → forms cisplatin

What shape is a complex ion if it has 6 ligands?

What shape is a complex ion if it has 6 ligands?

Octahedral

How can complex ions display E-Z or cis-trans isomerism? What shapes of ions does this apply to?

How can complex ions display E-Z or cis-trans isomerism? What shapes of ions does this apply to?

Ligands differ in the way in which they are arranged in space

- 2 ligands of the same type can be on the same side of the metal
- ion (next to each other), which forms the E or cis isomer
- 2 ligands of the same type can be on opposite sides of the metal
- ion (not next to each other), which forms the Z or trans isomer
- Applies to square planar and octahedral complex ions

What conditions are needed for a complex ion to display optical isomerism?

What conditions are needed for a complex ion to display optical isomerism?

Usually applies to octahedral molecules with 2 or more bidentate ligands, so that the mirror images are non-superimposable

What is cis-platin used for? Describe its mechanism of action

What is cis-platin used for? Describe its mechanism of action

It is used as an anti-cancer drug

It binds to DNA of fast growing cancer cells and prevents cell division, hence reducing the growth of cancer

Which metal ion is present in a haem group?

Which metal ion is present in a haem group?

What is the coordination number of a haem group?

What is the coordination number of a haem group?

What are the ligands in haem group?

What are the ligands in haem group?

- 4 nitrogen forming the porphyrin ring
- 1 oxygen
- 1 globin

Why is CO toxic?

Why is CO toxic?

CO also coordinately bonds to the Fe²⁺, and bonds more strongly to Fe^{2+} than O_2 . Stops O₂ from bonding to haemoglobin, so O₂ cannot be transported around the

What colour is $[Cu(H_{9}O)_{6}]^{2+}$ solution?

What colour is $[Cu(H_2O)_6]^{2+}$ solution?

Pale blue

What colour is $[Cu(NH_3)_4(H_2O)_2]^{2+}$ solution?

What colour is $[Cu(NH_3)_4(H_2O)_2]^{2+}$ solution?

Deep blue

What colour is [CuCl₁]² solution?

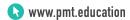
What colour is [CuCl₄]²⁻ solution?

yellow

What colour is $[Cr(H_2O)_6]^{3+}$ solution?

What colour is $[Cr(H_2O)_6]^{3+}$ solution?

Dark green



What is a precipitation reaction?

What is a precipitation reaction?

A reaction where soluble ions in separate solutions are mixed to form an insoluble compound

What colour is Fe²⁺'s aqua ion?

What colour is Fe²⁺'s aqua ion?

Green

What colour is Fe³⁺'s aqua ion?

What colour is Fe³⁺'s aqua ion?

Pale brown

What colour is Cr³⁺'s aqua ion?

What colour is Cr³⁺'s aqua ion?

violet

What colour is Mn²⁺'s aqua ion?

What colour is Mn²⁺'s aqua ion?

Pink

When Cu²⁺ reacts with NH₃ or OH⁻, what colour is the precipitate?

When Cu²⁺ reacts with NH₃ or OH⁻, what colour is the precipitate?

Blue

When Fe²⁺ reacts with NH₂ or OH⁻, what colour is the precipitate?

When Fe²⁺ reacts with NH₃ or OH⁻, what colour is the precipitate?

Green

When Mn²⁺ reacts with NH₃ or OH⁻, what colour is the precipitate?

When Mn²⁺ reacts with NH₃ or OH⁻, what colour is the precipitate?

Brown

When Cr³⁺ reacts with NH₃ or OH⁻, what colour is the precipitate?

When Cr³⁺ reacts with NH₃ or OH⁻, what colour is the precipitate?

Green

When Fe³⁺ reacts with NH₃ or OH⁻, what colour is the precipitate?

When Fe³⁺ reacts with NH₃ or OH⁻, what colour is the precipitate?

Brown

What colour is MnO₁?

What colour is MnO₄⁻?

Purple

Write a half equation for the reduction of MnO_√ to Mn²⁺

Write a half equation for the reduction of MnO₁ to Mn²⁺

$$MnO_4^- + 8H^+ + 5e^- - Mn^{2+} + 4H_2O$$

Why are redox titrations with transition metal compounds said to be self-indicating?

Why are redox titrations with transition metal compounds said to be self-indicating?

They usually involve a colour change as the metal is changing oxidation state; sometimes an indicator is still needed/useful

What colour is $Cr_2O_7^{2-}$?

What colour is $Cr_2O_7^{2-}$?

Orange

What colour is Cr³⁺?

What colour is Cr³⁺?

Green

Write a half equation for the reduction of Cr₂O₇²⁻ to Cr³⁺

Write a half equation for the reduction of Cr₂O₇²⁻ to Cr³⁺

$$Cr_2O_7^{2-} + 14H^+ + 6e^- - Cr_2O_7^{2-} + 7H_2O_7^{2-}$$

Describe how to test for metal ions

Describe how to test for metal ions

- Fill half of the test tube with the sample
- Add aqueous ammonia or sodium hydroxide drop by drop
- Colour of precipitate indicates the ion present

Write the method used to test for ammonium ions

Write the method used to test for ammonium ions

- Fill half the test tube with sample
- Add sodium hydroxide and warm gently
- Smelly gas is produced; damp red litmus paper turns blue

Why does lime water turn milky in the presence of carbon dioxide?

Why does lime water turn milky in the presence of carbon dioxide?

When carbon dioxide is bubbled in calcium hydroxide (lime water), calcium carbonate precipitate is formed

